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The common approach to estimation is kriging – an estimation variance is formulated and 
minimized in the context of a spatial random function.  There are two implicit assumptions behind 
such an approach: stationarity and ergodicity.  Stationarity is addressed by trends and locally 
varying parameters of estimation.  Ergodicity is rarely addressed; it is fundamental to kriging.  
This paper considers a non-kriging based approach to determine optimal weights; specifically, 
optimal weights are determined using simulated annealing to minimize the mean squared error 
based on estimating a specified number of locations from an exhaustive training image. 

Introduction 

Much of geostatistics is concerned with estimation and simulation of continuous variables.  
Linear estimation is a common starting point: 
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where u refers to a location, m refers to the mean, z*(u) is an estimate at location u, and n  refers 
to the number of data values z(ui), i=1,…,n and λi refers to their corresponding weights.  An 
estimation variance is formulated and an estimate is calculated. The criterion used is to minimize 
the estimation variance. 

This paper considers the use of training images to optimize the weights for linear estimates.  This 
method is explored using a mean squared error criterion and simulated annealing as the 
optimization method.  Weights obtained from this approach are then compared to those obtained 
from simple kriging and ordinary kriging for a number of different scenarios with strings of data. 

Proposed Methodology 

The idea is to use optimization to find the weights that are optimal for estimation under a mean 
squared error criterion: 
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The following methodology is proposed to determine the optimal weights: 

1. Assemble M sets of data and true values from a training image. 

2. Start with an initial set of weights (λi,i=1,…,n), calculate the M estimates and calculate 
the MSE. 
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3. Perturb the weights, recalculate the M estimates and recalculate the MSE. 

4. Accept the new set of weights with a simulated annealing-type decision rule and return to 
step 3 until no further improvement is possible. 

The next section illustrates the effectiveness of such an approach in comparison to SK and OK. 

Application 

Suppose we have training images at a resolution of 1000 units by 1000 units; for this example, an 
unconditional realization from sequential Gaussian simulation is used (Deutsch and Journel, 
1998).  For these training images, consider that the reference variogram is a spherical model with 
10% nugget effect.  
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where a is the continuity range, which will be varied in subsequent analyses for sensitivity 
purposes.  Let’s consider a specific configuration of five data aligned along a string d  distance 
units ( =d number of blocks distance between known and estimated point) away from the 
location to be estimated (see Figure 1). For comparison, the proposed methodology to obtain an 
optimal weight along with simple kriging, ordinary kriging and an equal weighted approach will 
be performed for estimation of the unsampled location.  Different cases are examined for these 
comparative analyses.  

 
d  

Figure 1: Configuration of data set used for different cases 
 

Case 1: Impact of variogram range in TI 

In this case we consider different TIs for different variogram ranges: 6, 10, 20, 30, 40, and 100 
units (see Figure 2).  For each TI, the optimal weights, SK weights, and OK weights are 
calculated; these are shown in Figure 3 and tabulated in Table 1. We can see that the MSE in the 
case of optimal weights is less than that of SK, OK and the equal weighted methods. At the same 
time we also see that the calculated optimal weights follow a pattern similar to the pattern of 
simple kriging weights; that is, end samples in the string are given higher weights than those near 
the centre. 
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Case 2: Impact of random number seed in Optimal Weights Approach 

Considering the same TIs generated for Case 1 above, we now consider the optimal weights 
approach when different random number seeds are used.  Specifically, the seeds 49049, 59059, 
and 69069 are considered; results are illustrated in Figure 4 and the MSE is recorded in Table 1. 

Case 3: Constrain the optimal weights to sum to 1.0 

For this scenario, we consider a constraint that the optimal weights must sum to one similar to 
OK. Figure 5 shows the results of imposing this constraint, and the MSE for this is tabulated in 
Table 2.  The resulting weights show that imposing this constraint yields an MSE that is greater 
than SK, but quite close to of ordinary kriging.  This appears reasonable given that the optimal 
weight approach has been constructed to emulate OK. 

Case 4: Consider a non-Gaussian TI 

Consider now that we want to move away from a Gaussian TI.  For this particular case, a non-
Gaussian TI can be obtained by simply squaring values in the exhaustive TI image at each 
location, and then perform a normal score transform.  Now we get the variogram of the normal 
score transformed training image (see Figure 6), and calculate the optimal weights, SK and OK 
weights (Figure 7). Table 3 summarizes the MSE for this case; we can see that the optimal 
weights approach yields the minimum MSE relative to the other three estimation approaches. 

Case 5: Impact of boundaries 

In this case we run through two TIs and place one below the other. In the first case (1000x5,20-
30) we consider a TI of 1000x4 of range 20 and another TI of size 1000x1 (fixed in all cases) 
with a range of 30 units. Both TIs have a common boundary in the horizontal direction. Now we 
consider it as one TI of size 1000x5 and calculate the optimal weights, SK and OK weights (see 
Figure 8). Similarly we run other cases of (1000x10 grid, with range 20 at the top and range 30 
below), (1000x5 grid, with range 30 at the top and range 40 below) and (1000x10 grid, with range 
30 at the top and range 40 below). Results for this case are tabulated in Table 4.  In all cases, the 
MSE from the optimal weights approach is lower than SK, OK and the equal weighted methods. 

Discussion and Conclusion 

The different cases considered in this study examined the MSE from the proposed optimal 
weights approach in comparison with SK, OK and an equal weighted scheme for estimation of an 
unsampled location using a string of data. In general, the MSE for the optimal weights method is 
lower than the other three estimation methods considered. In presence of a horizontal boundary, 
similarly favourable results are obtained.  In all cases, the string effect remains clearly evident 
and suggests that the higher weights assigned to end values are correct in kriging.  
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Table 1: Mean Squared Error (MSE) for Different Ranges (Case-1and Case-2):- 

 

 
Table 2: Mean Squared Error (MSE) for Different Ranges (Case-3):- 

range 
MSE 

(Optimal weight)  
MSE 

(Simple Kriging) 
MSE 

(Ordinary Kriging) 
MSE 

(Equal Weight) 
  seed 49069       
6 1.4033898 0.9921731 1.403826 1.426582 

10 1.1073977 0.8793535 1.106586 1.118542 
20 0.6604409 0.5928163 0.6599989 0.6640775 
30 0.4825731 0.4502287 0.4825832 0.4845606 
40 0.3969369 0.3746626 0.3966955 0.3982701 

100 0.2521586 0.2436695 0.2523342 0.2525712 
 

 
Table 3: Mean Squared Error (Case-4):- 

Figure 7  
MSE 

(Optimal Weights) 
MSE 

(simple kriging) 
MSE 

(ordinary kriging) 
MSE 

(equal weights) 
(a) 0.9812416 0.9829755 1.280239 1.28463 
(b) 0.9258254 0.9261239 1.158582 1.163533 
(c) 0.8040836 0.8041023 0.9296195 0.932699 
(d) 0.7163961 0.7174662 0.7921199 0.793256 
(e) 0.7240023 0.724368 0.795376 0.79614 

 

 
Table 4: Mean Squared Error (Case-5):- 

TI 
MSE 

(Optimal Weights) 
MSE 

(simple kriging) 
MSE 

(ordinary kriging) 
MSE 

(equal weights) 
1000x5,20-30 0.6520177 0.687206 0.761826 0.7440127 
1000x10,20-30 0.6160122 0.6444041 0.7406005 0.7291508 
1000x5,30-40 0.4243364 0.4556494 0.4856835 0.4668692 
1000x10,30-40 0.4779669 0.494923 0.5237929 0.5150857 

 

range 

MSE 
(Optimal 
weight) 

MSE 
(Optimal 
weight)  

MSE 
(Optimal 
weight) 

MSE 
(Simple 
Kriging) 

MSE 
(Ordinary 
Kriging) 

MSE 
(Equal 

Weight) 

  seed 69069 seed 49069 seed 59069       

6 0.9866188 0.9866118 0.9866322 0.9921731 1.403826 1.426582 
10 0.8772789 0.8772928 0.8773034 0.8793535 1.106586 1.118542 
20 0.5925331 0.5925286 0.5925307 0.5928163 0.6599989 0.6640775 
30 0.4501556 0.4501769 0.4501956 0.4502287 0.4825832 0.4845606 
40 0.3745092 0.3745278 0.374524 0.3746626 0.3966955 0.3982701 

100 0.2407958 0.2407897 0.2407892 0.2436695 0.2523342 0.2525712 
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Figure 2: Training images for different ranges 
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Figure 3: Comparison of estimation weights for optimal weight, simple kriging and ordinary 
kriging methods (Case 1).  
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Figure 4: Comparison of estimation weights for optimal weight for different random number 
seeds (Case 2).  
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Figure 5: Comparison of estimation weights for optimal weight, simple kriging and ordinary 
kriging methods (Case 3).  
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Figure 6: Normal score transformed plots of squared Training Images of different ranges and its 
corresponding variogram (Case 4).  
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Figure 7: Comparison of estimation weights for optimal weight, simple kriging and ordinary 
kriging methods (Case 4). 
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Figure 8: Comparison of estimation weights for optimal weight, simple kriging and ordinary 
kriging methods (Case 5). 


